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1 Introduction

The last decade has seen massive improvements in machine learning techniques
that hold promise for breakthrough advances in productivity and technology.
Parallel to this progress, our way of discussing new techniques and their short-
comings has evolved to anthropomorphic tones with proliferation of terms like
attention, intelligence, hallucination, bias, and insight. At the same time, there
is a growing understanding that something fundamental is missing in the current
framework of generative AI and statistical machine learning in general [, 2].
In this paper, we outline why statistical machine learning based on classical
probability theory is fundamentally inadequate for the tasks of attention, rele-
vance realization, abstraction and concept generation, and situational awareness
— tasks that humans and animals excel at. We argue that a machine learning
approach based on the ideas of quantum cognition ([3] and references therein)
is needed to bridge the gap between where we are and where we wish to be. We
also describe our implementation of the quantum cognition machine learning
paradigm at Qognitive.

2 Shortcomings of Classical ML

Whether implicitly or explicitly, machine learning has always been about learn-
ing a joint probability distribution of preprocessed features, whose relevance and
significance is ascertained by a human understanding of the domain. Here, the
joint probability distribution is understood in the classical Kolmogorov sense,
based on classical sets, whereby inference is achieved through application of
Bayes’ rule. The fundamental problem with this classical probabilistic descrip-
tion is that its complexity grows exponentially with the number of features.
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For example, a probability distribution over N binary features corresponds to
a vector of size 2V — 1'. This also leads to an exponential requirement for the
amount of data needed to learn this distribution statistically. In practice, statis-
tical analysis is only made possible by a careful choice of relevant variables and
overall dimensionality reduction based on human insight and understanding.
The basis of this human insight and understanding is arguably not statistical
[4, 5], otherwise one falls into a circular explanation [6]. This elicits the fact
that even the most advanced Al to date has shown remarkable lack of common
sense and understanding [1, 2, 4, 5, 7].

Intimately related to this curse of dimensionality? is the problem of repre-
senting concepts through classical sets. A good illustration of this problem is
that the number of non-empty subsets of a set with N elements is also 2V — 1.
For the case of infinite countable sets, such as the set of Turing machines or state-
ments of a formal number theory, the set of subsets represents a non-countable
infinity, which is at the core of the proof of Church-Turing[8, 9, 10] and Godel’s
theorems[11]3 [1, 12]. As an aside, this very realization led Alan Turing to con-
clude that “if a machine is expected to be infallible, it cannot also be intelligent
[12].” Consequently, generating new concepts as subsets of existing ones leads
to the same curse of dimensionality.

For example, consider GICS (General Industry Classification Standard) as
it has been applied to Iron Mountain (IRM). Iron Mountain is a company spe-
cializing in data storage and security. Before 2020, IRM was classified as a
Commercial and Professional Services company, but in 2020, it was reclassi-
fied as an Equity REIT (Real Estate Investment Trust) purely for tax purposes.
IRM is a REIT and a commercial services company at the same time. One could
fault the GICS system for not having sufficiently well separable categories, but
the fact is that any classification system encounters the same problem — clas-
sical sets allow their elements to be only 100% in or 100% out. If we try to
solve this problem by subdividing every commercial services company into RE-
ITs and non-REITs, we end up with too many buckets, making generalization
impossible. We could also consider GICS assignment as a “noisy” observation
and apply Bayes’ rule to create a “probabilistic mix” of Commercial and Pro-
fessional Services and REIT, but the problem is that depending on the context,
IRM is 100% REIT or 100% Commercial and Professional Services. Bayesian
probabilistic mix of the two does not make sense, and the observation is not at
all “noisy”.

Another difficulty of classification within the classical statistical and set the-

1For a sense of scale, 2299 is more than the number of atoms in the universe.

2The curse of dimensionality in statistics refers to exponential growth in the amount of
data needed to achieve the same accuracy of parameter estimation as a function of the number
of parameters.

3Godel’s theorem is a result in mathematical logic that states that any self-consistent
formal number theory contains true statements that are unprovable within the formalism of
the number theory. Closely related to Godel’s theorem is the Church-Turing theorem that
shows that there is no Turing machine (classical computer program) that can determine if any
given Turing machine given a particular input parameter will ever halt. The proofs of both
theorems rely on the fact that both the set of all statements of a formal number theory and
the set of all Turing machines are countable infinite sets, i.e. sets that can be enumerated by
whole numbers. In contrast, the set of all subsets of a countable infinite set is not countable,
i.e. is a more powerful set. The fact that human mathematicians can see the truth value of
the Godel statements has led Lucas and Penrose to argue that human cognition cannot be
simulated by a Turing machine.



oretical framework is related to clustering based on a form of distance. Firstly,
clustering algorithms notoriously suffer from the curse of dimensionality [13].
More subtly, one notes that human language is profoundly metaphorical, with
analogies entirely context dependent. Consider the sentence “Snow blankets the
ground” (due to Julian Jaynes [14]). Here, “snow” is compared to a “blanket”.
Any sensible clustering algorithm would consider “snow” and “blanket” as very
distant objects, and in fact, any two objects are similar in infinite number of
ways, most of them strikingly irrelevant (“humans and chairs are both smaller
than the sun”), and different in infinite number of ways [5]. What makes a
metaphor work is our ability to abstract away all the infinite number of ways
that the two elements of a metaphor are different and bring into crisp focus the
way they are similar, something that is mathematically impossible within the
confines of classical sets.

This difficulty of creating abstraction within a classical Bayesian framework
is also illustrated by the fact that in classical probability any uncertainty is
associated with entropy. Thus, in the case of IRM, a Bayesian approach would
have to assume that the observation of IRM as a REIT is somehow “noisy” and
is associated with a probability of being “wrong”. A surprising answer to these
problems lies in using quantum, rather than classical probabilities.

3 Quantum cognition

The first idea of quantum cognition emerged from the works of Aerts et al [15],
Khrennikov [16], and Busemayer et al [3] (see [17] for a recent survey). In these
works, it is posited that the state of mind is formally given by a quantum state,
i.e., a vector in a Hilbert space, and all questions that can be answered within
that state of mind are represented as operators in that Hilbert space. This way
of representing the state of mind, called Hilbert Space Models, turned out to
be remarkably successful at explaining our cognitive fallacies. Within cognitive
science, this discovery was treated as a mere curiosity. However, at Qognitive,
we have discovered that representing data as a vector in a Hilbert space with
observables represented by operators (matrices), leads to a logarithmic reduction
in the complexity of representation. This dramatic economy of representation
explains why evolution would select quantum cognition over classical statistical
learning. As living creatures, we do not encounter the world as well-structured
data relevant to a task at hand. Instead, we are confronted by a barrage of
unstructured inputs that need to be made sense of, while focusing on what
is important and drawing conclusions by abstracting away what is irrelevant.
Note that neither the pioneers of Quantum Cognition, nor we, take any position
on whether our brains achieve this form of representation by being physical
quantum devices [3, 18]. What we claim is that this formalism of quantum
probabilities describes our state of mind and our representation of data in a
way that achieves logarithmic reduction in complexity and makes non-statistical
data inference possible.

One dramatic consequence of this form of data representation and infer-
ence is that various observables are represented by non-commuting operators.
Therefore, like position and momentum of an electron in quantum mechanics,
observables are subject to the uncertainty principle — in general, there is no
quantum state that corresponds to an exact observation of all the data. The



cost of the logarithmic economy of representation is that the encoding of a large
number of features always involves a loss of precision. Another cost is what
led to the idea of Quantum Cognition in the first place — the cognitive falla-
cies that represent violations of Kolmogorov set rules, such as conjunction and
disjunction fallacies [3].

Representing data as a quantum state allows to see IRM (our example com-
pany from sec:2) as a Schrédinger’s Cat — a superposition of states corresponding
to various business models. More broadly, we argue that the uncertainty prin-
ciple inherent in quantum formalism is not a bug, but a feature. Recall that
in classical statistics any uncertainty is associated with non-zero entropy. Now,
consider the Bell state of two spins given by a superposition of spin-up spin-
down and spin-down spin-up % (It4) — |[41)). This is a pure quantum state, i.e.,
it is associated with zero entropy. However, considered separately, both spins
are in a state of maximum uncertainty — in quantum theory, one can and neces-
sarily has uncertainty in the absence of any entropy. This is what abstraction is!
For example, consider the statement “14+1=2". Numbers are meant to refer to
objects whose quantity they represent. However, the meaning of the statement
“14+1=2” is fundamentally different, and much crisper, than the statement “one
apple plus one apple equals two apples”. The latter statement invites all sorts
of questions of whether the two apples are in fact equivalent, whether an apple
could be added to an orange, and so on. Abstraction always requires a degree
of uncertainty, which is the flip side of generalization.

Importantly, just as quantum mechanics becomes classical in the limit where
Planck’s constant? becomes 0 (when commutators also tend to zero), quantum
representation of data becomes classical in the limit of high dimensional Hilbert
space, where all operators can be rendered commutative. On the other hand,
no amount of complexity can turn classical formalism into quantum.

4 Quantum Cognition Machine Learning

Using the insight of the pioneers of Quantum Cognition [3], we found a practical
way to implement a new paradigm of machine learning, which we call Quantum
Cognition Machine Learning (QCML). While substantially deviating from the
original models, it broadly follows the principles of quantum cognition outlined
above. In the context of QCML, training involves learning the operators and
encoding data in quantum states. All the correlations and higher order rela-
tionships within data are thus captured within the form of the operators and
their rules of commutation. Crucially, context dependent relevance of features,
concept generation, and abstraction arise naturally in this framework.

Additionally, QCML’s economy of representation can lead to drastic reduc-
tion of computation costs incurred by brute force solutions to AI problems [2].

Our QCML framework has been implemented on classical computers and
benchmarked against state-of-the-art machine learning methods in a variety of
settings as a proof of concept. Examples include MNIST [19], COIL20 [20],
PenDigits [21], and a variety of time series benchmarks [22].

4Planck’s constant, often written as h or f, is one of the fundamental constants of quantum
mechanics. If this constant is set to 0 then quantum behavior disappears and classical behavior
is recovered.



Yet, our greatest advantage may lie in the settings that are not even cov-
ered by current machine learning methods, in particular, situations where the
number of features far outstrips the amount of data you would need to learn
a statistical model. A good example is epigenetics — the study of gene expres-
sion. Epigenetics holds tremendous promise for cancer diagnostics, care, and
prevention. Yet, the current data inference methods only allow us to scratch
the surface [23] — a typical study focuses on a few genes at a time, leaving the
vast majority of data untapped. Consider that the human genome has about 28
million methylation sites, and this data is available to be linked with variables,
such as diagnoses, response to various therapies, etc.

Other examples where QCML can be applied are finance, advertisement
technology, large language models, robotics, defense, materials, etc.

5 QCML and quantum computing

Mathematically, QCML is a simulation of a quantum system, and as such it has a
natural extension to quantum computing. Qognitive is building partnerships to
explore a variety of physical quantum implementations of QCML on universal
quantum computers and specialized quantum devices. Quantum computing
extensions of QCML hold the potential to achieve true quantum advantage in
machine learning by exponentially enlarging the Hilbert space. Here, the process
of training corresponds to learning how to configure a physical process for a
given data point. We encode the data of the problem into a Hamiltonian and
through finding the ground state of this Hamiltonian we encode the data into
the quantum state, a method which fits naturally into quantum systems. Our
encoding method is distinct from existing quantum methods such as amplitude
or angular encoding, which seek to directly encode a bytestring into a quantum
state[24]. Intriguingly, executing QCML on native quantum hardware would
create the first example of a non-Turing machine [25] that could overcome the
well-known limitations of Turing machines [4, 12].

6 Conclusion

Qognitive discovered and implemented a new machine learning paradigm us-
ing principles of quantum cognition. The new paradigm achieves logarithmic
economy of data representation and is capable of non-statistical learning, includ-
ing relevance realization, attention, abstraction and generalization, and concept
generation. We continue finding new ways to improve QCML, combine it with
existing machine learning methods, and developing methods that are only ap-
plicable within the quantum paradigm.

As we improve our methods and understanding and optimize our digital
computer implementation, we are developing concrete business applications. In
particular, we are already generating financial forecasts that are currently used
in asset management.

We are also working on building a bridge to quantum computing, to which
QCML has a natural affinity.
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